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Turbulent shear flow in a curved duct 

By L. B. ELLIS A N D  P. N. JOUBERT 
Department of Mechanical Engineering, University of Melbourne 
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Experiments were conducted in two curved rectangular ducts of different radii 
and the results compared with flow in a straight duct. The turbulent boundary 
layers developing on the curved walls were examined for mean flow properties. 
The law of the wall takes a modified form and the usual logarithmic portion 
applies over a very small range of the profiles on the inner walls and a slightly 
larger range on the outer walls. Similarity based on a defect law did not exist 
for any part of the flow examined. 

1. Introduction 
The order-of-magnitude arguments usually applied to boundary layers indi- 

cate that curvature, and hence the resultant transverse pressure gradient, is of 
secondary importance and can therefore be neglected for ‘mild ’ curvature. 
Schultz-Grunow & Breuer (1965), Yen & Toba (1961) and Murphy (1962) have 
pointed out that this reduces the boundary-layer approximation to a lower order 
in the case of curved flow. Some work has been done in obtaining solutions to the 
higher-order equations (with the curvature terms included) for the laminar 
boundary-layer case. Schultz-Grunow & Breuer give a comparative summary of 
some of the methods employed. 

In  the turbulent boundary-layer case further factors are present. Eskinazi & 
Yeh (19561, Traugott (1958) and others showed that flow curvature has a marked 
effect on the turbulence of a shear flow, a not unexpected result in view of the 
classical observations of Taylor (1922,1932) and Gortler (1941), and more recently 
Thomann (1968) and Tillman (1967), on the differences in the stability of curved 
shear flows. 

Wattendorf (1935) and Eskinazi & Yeh have shown that, even with relatively 
mild curvature, there is considerable deviation from the logarithmic ‘law of the 
wall ’ as compared with the equivalent case in plane flow. Wattendorf attempted 
to correlate his observed shear stress distribution with those obtained from eddy 
viscosity concepts and also on the basis of an assumed angular momentum mixing 
length. Neither of these approaches agreed with his results. 

Marris (1956, 1960) postulated that Taylor’s vorticity transfer theory had 
greater validity for curved duct flows. He developed relationships that contained 
a number of free parameters, thus allowing considerable latitude in matching 
empirical data, but the values so obtained seem to lack universality. 

Rotta (1967), in a theoretical investigation of the effect of streamwise wall 
curvature on compressible boundary layers, assumed values for the charac- 
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FIGURE 1. Velocity distributions of incompressible turbulent flow near 
curved walls (from Rotta 1967). 

teristic length of the eddy structure, enabling the momentum and energy 
equations to be solved numerically. The results for the simpler incompressible 
case are reconstructed here as figure 1 (generally the same as Rotta 1967, 
figure 3). These curves are quantitatively in agreement with Eskinazi & Yeh’s 
results, although Rotta noted that his treatment underestimated the effect of 
curvature. I n  the experiments of Wattendorf and Eskinazi & Yeh, the ducts used 
were of relatively short radius and, in the case of the latter, the reported tests 
were limited to one Reynolds number. Both the experiments were arranged with 
the curved duct following a straight channel with fully developed flow. 

The purpose of the work discussed here was to investigate (i) differences be- 
tween flow developing in straight and curved ducts starting from an undeveloped 
flow; (ii) the effect of mild curvature on highly developed channel flow, par- 
ticularly with regard to the existence of flow similarity; (iii) the effect of wall 
curvature on a boundary layer with zero streamwise pressure gradient. 

2. Analysis 
The use of u/U, and yU,/v as wall region co-ordinates is known to produce 

similarity that is universal for plane, smooth-wall boundary layers, with and 
without longitudinal pressure gradients, and which, with an appropriate slip 
function, correlates rough-wall boundary layers as well. 

For the smooth wall 
UlU, = *f(yU,/v). (1) 

Various hypotheses and dimensional reasoning (Rotta 1962) result in a logarith- 
mic law applicable in a region just outside the viscous sublayer: 

u 1 yu, 
u, 2r v 
- = -1n-+A. 
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Multiplying by UJU,, where U, is a reference velocity, typically the maximum 
or free-stream velocity, yields 

which is the basis of the Clauser chart (Clauser 1954). In the case of curved flow, 
it is possible that ( 2 )  is invalid owing to the presence of an additional variable, but 
the experimental results of Eskinazi &Yeh indicate that it is valid for at  least 
a small region just outside the viscous sublayer. 

In  considering the core region of fully developed channel flow, the implication 
of the findings of Traugott, that solid body rotation produces effects on the 
turbulence quantities, is that similarity based on angular velocity defect is 
unlikely to occur. Likewise, a similarity argument based on a velocity defect 
can be dismissed, on the grounds that the experimental evidence of Wattendorf 
and others indicates that there is a considerable region of near potential-like 
velocity distribution. In  such a region, the velocity distribution would be a func- 
tion of the datum velocity. On the other hand, this criticism does not apply to 
similarity based on the ur distribution. Using K = ur the defect law relationship 
would be 

K = Kn+koN% 

where Kn is the correlating ur product and 

( r  - r,)l(rz - Yl). 

(4) 

the position co-ordinate, say 

Townsend (1956) noted, when discussing flow similarity with concentric 
rotating cylinders, that a large body of the core region is close to being irrota- 
tional; while close to the wall, the mean rate of shear is so large that any super- 
imposed rotation is negligible. 

Kinney (1967) accepted Taylor's vorticity transport theory as being relevant 
t o  rotating flows. His approach, when applied to the core region of curved duct 
flows by the authors, yielded 

where K4 is a universal constant, and rm is the radius to the point of zero shear 
stress. rm can be eliminated by using the wall shear stress a t  both walls, since 

Equation (5) is a defect law based on angular velocity and, as such, is a t  variance 
with the experimental observations of Traugott and the discussion that led up 
to  (4). 

3. Experimental programme 
The layout of the equipment used was generally as shown in figure 2, the outer 

wall of the 15 in. radius duct being made adjustable so as to allow the imposition 
of a zero or variable pressure gradient on the inner-wall boundary layer. 
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FIGURE 2. Experimental apparatus. 

The duct height of 33in. and width of 2.5in. were selected as a compromise 
based on the air flow available, the desirability of a large width to allow a reason- 
able thickness of boundary layer, and the desirability of a narrow width, to 
minimize secondary flow effects, ensure full development of the flow in the length 
available, to avoid separation a t  entry or exit and to prevent the effect of entry 
and exit conditions extending for any appreciable length into the duct. 

All ducts were fitted with wall static tappings a t  positions corresponding t o  
30" intervals on the 15 in. radius duct. For the curved ducts, tappings were placed 
in both the inner and outer walls. In  addition to the main tappings, which were 
arranged along the equatorial section, one row was also provided along a line at 
right angles to these, to assist in checking the two-dimensionality of the flow. 
The bulk of the velocity readings were taken with a 0.014in. thick, flattened, 
square-ended total head probe and a 0-030in. dia. static head probe, although 
some early readings in the straight duct made use of a 0.024in.dia. square- 
ended total head tube. The total and static tubes were calibrated against a 
standard Pitot-static tube. These tubes were mounted on a rigid, micrometer- 
type traverse. The effective total head tube position was obtained by adding 
a correction to the physical position, the correction being that established by 
MacMillan (1957). 

The wall shear stresses were determined by using a Clauser chart. This method, 
like those using Preston or Stanton tubes, relies on the existence of a universal 
wall region. Townsend reported that the wall stresses deduced on the basis of 
the logarithmic wall law are consistent with the stresses measured in other ways; 
and the work of Eskinazi & Yeh indicates that this contention is valid at  least for 
the degree of wall curvature considered here. 

During preliminary checking with the 15in. radius duct fitted, it was found that 
there were gross irregularities, similar to those found by Marris, in the velocity 
profiles. Furthermore, there was considerable inconsistency between profiles 
taken a t  various off-centre positions across the duct. Careful checking of mis- 
alignments in the duct geometry and rearrangement of the screens with a lower 
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FIGURE 3. Profiles at various spanwise positions, 210' station (after modification). 

solidarity, as suggested by Bradshaw ( 1965), removed these irregularities (see 
Ellis 1969). Figure 3 shows the profiles at various spanwise positions at  the 210" 
station after these corrections. The results of the traverses for the stations from 
30" to 210" indicated that the flow may not have been fully developed a t  the 
210" station, and this would not be reasonably guaranteed even when a station 
was provided at 230". 

Trials were then made of methods of promoting rapid thickening of the 
boundary layer in the entrance length of the duct. 6 in. wide strips of &60 emery 
paper proved successful, to the extent that the velocity profiles at  the 210" and 
230" stations were essentially identical and showed no spanwise variation. While 
the emery paper would undoubtedly have altered the turbulence structure down- 
stream, it is likely such alteration would have decayed in the distance to the 
measuring station. 

In  the case of the 75 in. radius duct spanwise variation in velocity was noted 
and this persisted despite careful realigning of the duct and, in fact, was stable 
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FIGURE 4. Wall static pressure against position dong duct. Duct (in. radius) : (a) straight; 
( b )  15; (c) 15 (set for zero pressure gradient) ; ( d )  75.  
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FIGURE 5. Typical radial static pressure distributions. Duct (in. radius) : (a)  15; ( b )  75. 
-, calculated values. 0, static probe readings; fl, wall static pressure. 
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against quite gross duct distortions and deliberate attempts to induce asym- 
metric flow. Although the profiles for the stations immediately on each side of 
the equatorial station were identical within the limits of the accuracy of the 
measurements, those further out showed considerable variation. After all known 
methods that might correct the spanwise variation had been tried, they were 
accepted as part of the flow. Kaye & Elgar (1958) and Tani (1962) reported 
Taylor-Gortler type vortices in curved turbulent flow; and it is felt that dis- 
turbances of this type may have contributed to these irregularities. 

4. Results and discussion 
Figure 4 shows the dimensionless plots of wall static pressure against position 

along the duct for the four duct configurations used. In  each case, the appropriate 
static pressure a t  the entrance has been used as the reference. The 15 in. radius 
duct had a series of static tappings close to the entrance and parts (b )  and ( c )  of 
figure 4 reveal that the pressure variation appropriate to the curved flow is 
established by about two duct widths from the entrance. 

Figure 5 compares typical non-dimensional static pressure distributions across 
the widths of the 15 in. and 75in. radius ducts. The continuous line shown as 
the calculated value was obtained from 

where P is the total pressure, and 1 and 2 refer to the inner and outer walls, 
respectively, as used by Wattendorf and Eskinazi & Yeh. In  the test cases, this 
met the outer wall static tapping pressure within the limit of accuracy expected 
of these readings, so that the calculation method was taken to be reliable. By 
comparison, it was noted that the static probe readings did show some scatter, 
particularly when near the walls. 

Figures 6-9 show the development of the velocity distributions in the straight, 
15 in. and 75 in. radius ducts. Comparison of figures 6 and 8 shows the very rapid 
thickening of the outer-wall boundary layer of the 15 in. radius duct, compared 
with that of the inner wall of the same duct and of the walls of the straight duct. 
The profiles of figure 8 seem to indicate that the potential-like distribution, 
ultimately impressed on the central region, comes from the outer wall flow. This 
behaviour is also revealed, although to a much lesser extent, in the profiles of 
figure 9, relating to the 75 in. radius duct. 

Figures 10 and 12 show the variation of 

c; = 2(KT/K)2 

with flow development and Reynolds number for the 15in. radius duct, while 
figures 12 and 13 give similar information for the 75 in. radius duct and the 15 in. 
radius zero pressure gradient convex wall. C; has been used for the local skin 
friction coefficient and Kl((rJr1)2 - 1)/2v for the Reynolds number, to avoid 
the difficulty of the absence of a rational reference velocity. 
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FIGURE 10. C; variation with flow development, 15in. radius duct. 0 ,  inner; 0, outer wall. 
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FIGURE 11. C; variation with Reynolds number, 15in. radius duct. a, inner; 0, outer wall. 
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FICUR~E 12. C; variation with flow development, 75 in. radius duct. a, inner; 0, outer wall. 
t Points possibly affected by outlet conditions. 
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FIGURE 13. C; variation with distance along plate, 15 in. radius convex wall, zerolongitudinal 
wall pressure gradient. - - -, possible onset of' interference from outer wall. 
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FIGURE 14. Clauser chart for developing flow, straight duct. -, universal law. 
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FIGURE 15. Clauser chart, 15 in. radius duct, 60' station. a, inner; 0, outer wall. 
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FIGURE 16. Clauser chart, 15 in. radius, 230" station. a, inner; 0, outer wall. 
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FIGURE 17. Clauser chart, 75 in. radius, station 4. a, inner; 0, outer wall. 

4.1. Wall region : straight duct 
As expected, the wall region of the straight-duct flows showed good correlation 
with the logarithmic law of the wall. Pigure 14 shows a sample of four profiles 
plotted on a Clauser chart. 

4.2. Wall region: curved ducts 
Clauser charts were plotted for the inner and outer walls at  a number of stations 
in both the 15in. and 75  in. radius ducts. A sample of these plots is shown in 
figures 15-18. The line of best fit for (4Cj)S is shown on the Clauser charts. There 
is considerable difference between the form of these plots, and those for the 
straight duct in figure 14. For the inner wall, the logarithmic region is now of 
limited extent, even for the highly developed flows, and the outer wall plots have 
a characteristic droop. Inspection of figures 15-18 shows that the logarithmic 
law of the wall 

u 1  
-= -ln&+A u, x v 
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FIGURE 18. Clauser chart, 75 in. radius, station 8. @, inner; 0, outer wall. 

can only be applicable up to quite small values of yUJv for the inner wall and 
is thus of limited value. 

Figure 19 shows the universal plots of u/U, against yUJv for a random selection 
of twelve profiles taken from the 15 and 75in. radius ducts. With the one exception 
of the curve for ruU,/v = 96 100, figure 19 indicates a systematic variation with 
that parameter, regardless of the actual value of the curvature or other individual 
variables. The results thus obtained confirm that Rotta's predictions under- 
estimate the effect of curvature, although, when comparing figure 19 with figure 1, 
it must be remembered that the high yUJv sections are being affected by the 
outer flow region. It is necessary to exercise caution in drawing any conclusions 
from figure 19. The U, values used were obtained from the C; values that pro- 
vided the best fit for (3), and consequently a t  least part of the various profiles are 
forced to be common when plotted as u/U, against yU,/v. 
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FIGURE 19. Wall region similarity, curved walls, various stations for 15 and 75 
ducts. Curve labels are values of (r,U,)/v x 

in. radius 

4.3. Core region : curved ducts 
The phenomenological approach to the determination of the mean velocity dis- 
tribution requires that a knowledge be had of the shear stress distribution. In 
the case of fully developed curved duct flows 

gives such a relationship, provided rm can be evaluated. Wattendorf made several 
unsuccessful attempts t o  evaluate rm on theoretical grounds. The authors have 
had no greater success. Since the location of rmis an important factor, it is worth 
examining the parameters that affect it. Assuming that the relevant functional 
relationship is 

rm = j'(r1, r2, K,, P, Y), 
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FIGURE 20. Location of zero r as a function of rl/r2. - - - , laminar flow (after Eskinazi & 
Yeh); 8 ,  Wattendorf; 0 ,  Eskinazi & Yeh; 0, present work. 

FIGURE 21. Location of zero T as a function of Reynolds number 
and radiuslwidth ratio: 

dimensional analysis can be used to form three dimensionless products. Figure 20 
shows the dimensionless location of the point of zero shear stress given by T = 0 
at r = rm as a function of rJr2. The values of rm for the present work have been 
determined by the use of (6). The single values given by Wattendorf and 
Eskinazi & Yeh are also plotted. 

Although a figure of this type was the only one given by Eskinazi & Yeh, it 
is apparent that the third dimensionless product, Reynolds number, could be 
of considerable significance. Figure 2 I shows the experimental values of location 
of zero shear stress as a function of duct width Reynolds number and mean 
radiuslwidth. Those for ?/b = 6.5 (the 15 in. radius duct) show a slight consistent 
dependence on Reynolds number, but those for F/b = 30.6 (the 75in. radius duct) 
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2y/6 (log scale) 

FIGURE 22. ' K '  defect relationships for developed flow, 15 in. radius duct, inner and outer 
walls. Reynolds number ( x  6,  6.1; 0 ,  8.4; 0 ,  11.3; Q 13.4. 

show more scatter. It was mentioned previously that certain inconsistencies were 
present in the 75 in. radius duct flow, so that this scatter was not unexpected. 

Wattendorf found that, although there was little difference between the 
non-dimensional plots of the velocity profiles for the channels of two different 
radii, they were each greatly different from those of the straight channel. Noting 
that ( rm-r l ) / ( r2-r l )  must equal 0.5 for rl = r2 (the straight duct case), figure 20 
indicates that this problem is still as unresolved as it is interesting. The figure 
shows that the point of zero shear stress may be very sensitive to changes in 
mild curvature, but then becomes essentially fixed a t  about one third of the 
distance across the channel from the inner wall for curvatures above a certain 
amount. 

Figure 22 shows the defect law 

(K1- K ) / K  = f P Y / b )  
for a range of duct width Reynolds numbers. The results were taken a t  the 230" 
station where the flow is highly developed; both the inner and outer wall profiles 
are shown. The inner and outer wall profiles show a marked difference both in 
position and form. This would seem to indicate that Wattendorf's figure 20, has 
been misleadingly based on the plotting of insufficient points and that, in fact, 
there is no universal defect law common to  both inner and outer walls. Figure 22 
shows a consistent variation of the profiles with Reynolds number, particularly 
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2y/b (log scale) 

FIGURE 23. ‘K’  defect relationships for developed flow for various ducts a t  the one duct 
width Reynolds number. Inner: +, 15 (in. radius) ; Q, 76. Straight, 0. Outer: 6 , 1 5 ;  0 , 7 5 .  

for the inner wall. Reynolds similarity would not appear to exist for the central 
flow region of curved ducts. I n  figure 23 the defect relationship has been plotted 
for the inner and outer sections of both the 15 in. and 75  in. radius ducts, and for 
the straight duct. This shows a strong dependence on radius, hence on duct 
radius Reynolds number. 

The application of (5) which followed from the extension of Kinney’s analysis 
to  the fully developed flow situation was unsuccessful, it being found impossible 
to obtain a value of K ,  which provided a good fit to any one profile. 

4.4. Outer region of convex wall boundary layer 

The findings of 3 4.3 indicate that it is unlikely that a universal defect law exists 
for the outer region of a curved wall boundary layer, even for the simplified case 
of zero longitudinal wall pressure gradient. Figure 24 shows that this is the case. 

5. Conclusions 
(i) The behaviour of a curved shear flow has been found to be unlike that of 

a plane shear flow. The rate of growth of the boundary layers and the values of 
the skin friction coefficients obtained indicate that the turbulence tends to  be 
suppressed on the convex wall and amplified on the concave wall, and this is in 
agreement with the classical Rayleigli stability criteria. 
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FIGURE 24. ‘K’ defect relationships for developing flow, 15 in. radius convex wall, zero 
longitudinal wall pressure gradient. 

Station (deg) (K,z)/vr, ( x 
0 60 8.7 
0 90 12-9 
Q 120 17.2 

(ii) Similarity of the mean flow, as represented by a defect type law, does not 
exist on the basis of mean velocity, ur or ulr for either fully developed curved 
channel flow or the outer regions of convex wall boundary layers. 
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